

© Apium Additive Technologies GmbH 2017. All rights reserved.

0

Apium M220 Medical Device Manufacturing Machine

Applications

Medical Vision and Workflow

© Apium Additive Technologies GmbH 2017. All rights reserved.

MRI / CT

Segmentation

Slicing / G-code generation

6

MRI / CT

Segmentation

Reconstruction

Tool path generation

Additive Manufacturing

ISO 10993-1:	Biological evaluation of medical devices Part 1: Evaluation and testing			
ISO 10993-2:	Biological evaluation of medical devices Part 2: Animal welfare requirements			
ISO 10993-3:	Biological evaluation of medical devices Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity			
ISO 10993-4:	Biological evaluation of medical devices Part 4: Selection of tests for interactions with blood			
ISO 10993-5:	Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity			
ISO 10993-6:	Biological evaluation of medical devices Part 6: Tests for local effects after implantation			
ISO 10993-7:	Biological evaluation of medical devices Part 7: Ethylene oxide sterilization residuals			
ISO 10993-8:	Biological evaluation of medical devices. Part 8: Selection and qualification of reference materials for biological tests			
ISO 10993-9:	Biological evaluation of medical devices Part 9: Framework for identification and quantification of potential degradation products			
ISO 10993-10:	Biological evaluation of medical devices Part 10: Tests for irritation and delayed-type hypersensitivity			
ISO 10993-11:	Biological evaluation of medical devices Part 11: Tests for systemic toxicity			
ISO 10993-12:	Biological evaluation of medical devices Part 12: Sample preparation and reference materials (available in English only)			
ISO 10993-13:	Biological evaluation of medical devices Part 13: Identification and quantification of degradation products from polymeric medical devices			
ISO 10993-14:	Biological evaluation of medical devices Part 14: Identification and quantification of degradation products from ceramics			
ISO 10993-15:	Biological evaluation of medical devices Part 15: Identification and quantification of degradation products from metals and alloys			
ISO 10993-16:	Biological evaluation of medical devices Part 16: Toxicokinetic study design for degradation products and leachables			
ISO 10993-17:	Biological evaluation of medical devices Part 17: Establishment of allowable limits for leachable substances			
ISO 10993-18:	Biological evaluation of medical devices Part 18: Chemical characterization of materials			
ISO/TS 10993-19:	Biological evaluation of medical devices Part 19: Physico-chemical, morphological, and topographical characterization of materials			
ISO/TS 10993-20:	Biological evaluation of medical devices Part 20: Principles and methods for immunotoxicology testing of medical devices			

ISO 10993

Abundance

Figure 1: System standardization (C₁₄H₃₀ in n-hexane)

© Apium Additive Technologies GmbH 2017. All rights reserved.

8

ISO 10993

Abundance

TIC: 12276739_15.D\data.ms

Figure 2: 0.9 % NaCl solution (negative control)

ISO 10993

Abundance

TIC: 12276739_10.D\data.ms $\cos \infty$ franciska i 1977 oh 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 Time->

Figure 3: Isopropyl alcohol (negative control)

Surface Analysis – XPS Data

Plot of amount of chemical species in PEEK filament and 3D printed PEEK part

PEEK Screening – 3 Point Bending Test

PEEK I4

Biocompatibility tests available for i4 G

Standard	Description
ISO 10993-3	Genotoxicity: Ames Test
ISO 10993-3	Genotoxicity: Chromosome aberration test
ISO 10993-3	Genotoxicity: Mouse Lymphoma test
ISO 10993-5	Cytotoxicity
ISO 10993-6	Test for local effects after Implantation in bone (90 days)
ISO 10993-10	Sensitization: Maximization test according to Magnusson and Kligman
ISO 10993-10	Irritation: Intracutaneous Reactivity
ISO 10993-11	Subchronic Systemic Toxicity
ISO 10993-12	GC/MS Fingerprint
USP Class VI	Acute Systemic Toxicity Intracutaneous Reactivity Muscle Implantation

6 © Apium Additive Technologies GmbH 2017. All rights reserved.

16

Print Job Details

M220_B1	_Peek_3x	_p18_(007_9x_	_peek_	huelse
---------	----------	--------	---------	--------	--------

Start Time:		2019/02/21 15:32
End Time:		2019/02/21 18:51
Status:		Success
Filament Length	7.682 m	
Filament Volum	135.542 cm³	
Filament Type:	Apium PEEK 450 Na	tural 1.75mm 200g
Spool Number:		A111111
Started By:		admin

Close

Print Job ID: 000069

Print Job Filename: M220_B1_Peek_3x_p18_007_9x_peek_huelse.gcode

Print Started By: admin

Print Started: 2019-02-21 15:32:38

Print Finished: 2019-02-21 18:51:31

Print Duration: 03:18:52

Filament Length: 7.682 m

Filament Volume: 135.542 cm³

Filament Type: Apium PEEK 450 Natural 1.75mm 200g

Spool Number: A111111

Printer SN: M220G01R010002

Print Job Completed Successfully

Print Report

2019-02-21 18:52

2 of 4

Print Report

Printed Part

Printed Examples

Dr. med. Dr. med. dent. Florian M. Thieringer, MHBA Kaderarzt/Co-Leiter 3D-Print Lab Tel.061 328 72 37 florian.thieringer@usb.ch

